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The inviscid low Mach number compressible flow developing from a plane incompressible
vortex with constant density in a bounded domain is studied. A reference solution for this
model flow is obtained by two-time scale asymptotic development in the zero Mach num-
ber limit. The solution can be decomposed into variations with a slow convective and a fast
acoustic time scale. A selection of numerical schemes widely used to solve unsteady com-
pressible low Mach number flows has been implemented to simulate this flow for two
Mach number values, M = 0.1 and M = 0.01. The ability of the schemes to predict low Mach
number flows and their behavior with the value of the Mach number have been analyzed.
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1. Introduction

In the last two decades, significant progress has been made in the mathematical study of the low Mach number limit of
the compressible Euler and Navier–Stokes equations [48]. Since the pioneering work of Klainerman and Majda [29] for Euler
isentropic flows and nearly incompressible initial data, rigorous results have been established with more general hypotheses,
considering the case of general initial data [4,25], non-isentropic flows [39] and for bounded or unbounded domains [2]. Re-
cent developments consider the incompressible limit for the Navier–Stokes equations [32,34,20].

In parallel to the mathematical studies, obtaining accurate numerical solutions of compressible low Mach number flows is
also the subject of many investigations. When the Mach number is very small, the time scale linked to the propagation of
acoustic waves becomes very small compared to the time scale associated to characteristic velocities of the flow, leading
to a degradation in efficiency and accuracy of the method of resolution [11,37]. Two strategies are generally adopted.

The first one consists in solving an approximated system of equations obtained by an asymptotic decomposition at low
Mach number of the compressible equations. This decomposition allows the equations linked to the respective distinct char-
acteristic scales to be resolved by different methods. The separation of the scales allows the transition from a hyperbolic sys-
tem of compressible equations to a hyperbolic/elliptic one in the low Mach number limit to be distinguished. The method
can eliminate the acoustic contribution while allowing weak compressibility effects due to source terms or transport phe-
nomena to be represented [35]. This approach is retained for example for variable density flows due to stratification [10] or
thermal transfers [42]. It is widely used for a large range of low Mach number applications in combustion, multi-phase or
thermodynamical flows, but the methods used for one application are not always valid for another. The major difficulty lies
. All rights reserved.
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in the fact that the decomposition is far from being unique [31]. The numerical method developed for one decomposition
remains largely associated to the validity domain of the approximated equations [40]. Despite many differences in the detail,
most of the numerical methods retain the same strategy, derived from the resolution of the incompressible equations, and
referred to as pressure-based methods by Keshtiban et al. [28]. These methods belong to the class of predictor–corrector
methods where the acoustic pressure is calculated once the convective flow has been estimated.

When the validity of the approximated system is no longer satisfied, for example when the Mach number increases in
time or locally in the flow, this strategy cannot be retained. This occurs for example in the transition from deflagration to
detonation [6] or in cavitation flows [7] where locally supersonic bubbles exist in an otherwise subsonic flow. In a general
way scale separation is not suited to flows where the propagation of acoustic waves or thermodynamic coupling plays a
dominant role, as in the formation of thermoacoustic instabilities [22]. The second strategy consists therefore in solving
the compressible fluid mechanics equations with numerical methods inspired by the resolution of high speed flows, and re-
ferred to as density-based methods by Keshtiban et al. [28], where modifications are made in order to compensate for the
poor efficiency and the lack of precision in the low Mach number limit [16]. The fact that the acoustic wave velocity is large
compared to the convective velocity decreases the efficiency of the explicit compressible methods in the low Mach number
limit because the stability criteria require the use of very small time steps [23]. This limitation can become very severe in the
case of unsteady flows and can also reduce the accuracy of the solution. On the other hand, implicit methods can be cum-
bersome because of the ill-conditioned system to solve [46]. To deal with the scale discrepancy, compressible methods are
usually preconditioned [55]. The method proposed by Turkel [54] accelerates the convergence of steady flows by modifying
the time step. This kind of method is known to introduce numerical dissipation, which reduces accuracy in unsteady flows
[59]. The use of a dual time step extends these approaches to time-dependent flows [12] for which all the frequencies need
not be predicted. These density-based strategies modify the properties of the numerical schemes and the pertinence of those
approaches for long time integration such as required by DNS and LES simulations remains a particular issue.

The reason for this work is to analyze the low Mach number behavior of a selection of numerical schemes usually applied
to such compressible simulations, with separate time and space integration, and derived from Godunov’s type of scheme.
This work focuses on the compressible Euler equations and the study of the numerical methods is performed with the help
of asymptotic expansion of a model flow consisting of incompressible initial vortex in a bounded domain.

The governing compressible equations are introduced in Section 2. Dimensionless equations are presented together with
the model flow configuration retained in this study. Numerical methods are described in Section 3. The low Mach number
solution of the model flow is analyzed in Section 4 using an asymptotic expansion in the zero Mach number limit. Numerical
simulations are compared in Section 5 with respect to their low Mach number behavior, their accuracy and stability prop-
erties. Concluding remarks are given in Section 6.

2. Governing equations

In order to analyze the behavior of numerical schemes at low Mach number flows, a simple yet non-trivial model flow is
considered, consisting of a plane inviscid vortex evolving inside a bounded domain X = [0,L] � [0,L].

The flow is governed by the compressible Euler equations where conservation of mass, momentum and total energy are
given in a conservative form by
oq
ot
þr � ðquÞ ¼ 0 ð1aÞ

oqu
ot
þr � ðqu� uÞ þ rp ¼ 0 ð1bÞ

oqet

ot
þr � ððqet þ pÞuÞ ¼ 0 ð1cÞ
where q denotes the density, u the velocity, p the pressure and et the total energy, defined by qet ¼ qeþ 1
2 qu2 in terms of the

internal energy e. The flow follows the ideal gas law so that the pressure and the internal energy are related by the following
equation of state:
p ¼ ðc� 1Þqe ð2Þ
where c is the heat capacity ratio.
A non-dimensionalization of the equations is performed by using the basic reference values of length, density, fluid veloc-

ity and pressure, Lref, qref, uref and pref. The low Mach number limit of the Euler equations can be expressed by choosing dif-
ferent reference values for the flow velocity and the sound velocity, respectively uref and cref. The reference Mach number
M ¼ uref

cref
ð3Þ
determines a thermodynamic pressure pt
ref , according to the definition of the reference sound speed
cref ¼

ffiffiffiffiffiffiffiffiffiffi
cpt

ref

qref

s
so that pt

ref ¼
qref u

2
ref

cM2 ð4Þ
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with a density reference qref. Another choice can be made for the pressure reference, based on a dynamical pressure refer-
ence pd

ref defined as
pd
ref ¼ qref u

2
ref ð5Þ
to scale the pressure gradient in the momentum equation. If the thermodynamic reference pressure is retained, the dimen-
sionless pressure is defined by
p ¼ pt
ref p

þ ð6Þ
whereas in the other case, it will be defined as
p ¼ pd
ref p

� ð7Þ
A relation between the two dimensionless pressures is
p� ¼ 1
cM2 pþ ð8Þ
showing that in the low Mach regime, the two pressure references have a large difference of scale, proportional to M2.
In the low Mach compressible regime on a bounded flow domain, it is usual, like for example in Bijl and Wesseling [8] or

Jenny and Müller [26], to decompose the pressure p = p(x, t) into a mean thermodynamic pressure depending only on time
p0(t) defined by
p0ðtÞ ¼
1

volðXÞ

Z
X

pðx; tÞdV ð9Þ
and a hydrodynamic pressure fluctuation p2(x, t), such that
pðx; tÞ ¼ p0ðtÞ þ p2ðx; tÞ ð10Þ
The mean pressure p0(t) is a background pressure, given by a global thermodynamic relationship. The reference thermo-
dynamic pressure pt

ref scales the mean pressure p0(t), and the reference dynamical pressure pd
ref scales the fluctuation p2(x, t).

Therefore, by choosing the dynamical reference pressure pd
ref , the dimensionless Euler equations and the thermodynamic

state equation can be written in the same form as the dimensional ones:
oq�

ot�
þ r� � ðq�u�Þ ¼ 0 ð11aÞ

oq�u�

ot�
þ r� � ðq�u� � u�Þ þ r�p� ¼ 0 ð11bÞ

oq�e�t
ot�

þ r� � ððq�e�t þ p�Þu�Þ ¼ 0 ð11cÞ
with
e�t ¼
1

ðc� 1Þ
p�

q�
þ 1

2
u�2 ð12Þ
where .* denotes the dimensionless variables, given by q = qrefq*, u = urefu*, x = Lrefx*, t = Lref/uref t*.
The pressure decomposition gives
p�ðx�; t�Þ ¼ 1
cM2 pþ0 ðt�Þ þ p�2ðx�; t�Þ ð13Þ
so that in the momentum equationr*p* can be rewritten asr�p�2. With this scaling, the Mach number M only appears explic-
itly in the pressure decomposition. A similar splitting can be applied to the total energy
q�e�t ðx�; t�Þ ¼
1

ðc� 1Þ
1

cM2 pþ0 ðt�Þ þ p�2ðx�; t�Þ
 !

þ 1
2
q�u�2ðx�; t�Þ ð14Þ
leading to the definition:
q�e�t0ðt�Þ ¼
1

ðc� 1ÞcM2 pþ0 ðt�Þ ¼
1

ðc� 1Þp
�
0ðt�Þ ð15aÞ

q�e�t2ðx�; t�Þ ¼
1

ðc� 1Þp
�
2ðx�; t�Þ þ

1
2
q�u�2ðx�; t�Þ ð15bÞ
so that the energy conservation equation becomes
oq�e�t2

ot�
þ r� � ððq�e�t2 þ p�2Þu�Þ þ

1
ðc� 1ÞM2 pþ0 ðt�Þr� � u� ¼ �

1
ðc� 1ÞcM2

opþ0 ðt�Þ
ot�

ð16Þ
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and can be rewritten as
ðc� 1ÞM2 1
pþ0 ðt�Þ

oq�e�t2

ot�
þ r� � ððq�e�t2 þ p�2Þu�Þ

� �
þr� � u� ¼ �1

c
1

pþ0 ðt�Þ
opþ0 ðt�Þ

ot�
ð17Þ
This shows formally that in the zero Mach number limit, when the small scale fluctuations due to the acoustic waves are
neglected (they would require additional reference scales to be taken into account), the energy equation ensures the diver-
gence-free condition on the velocity field if the mean pressure is constant in time [41]. This dimensionless system is retained
in the numerical methods analyzed in this study. In the numerical simulations, a decrease of the Mach number is therefore
obtained by an increase of the mean thermodynamic pressure of the initial state p�0. For practical simulations of compressible
flows, this scaling naturally arises every time a compressible simulation is initialized with an incompressible flow.

If the choice of the dynamical pressure as reference pressure is retained, dimensionless Euler equations are formally iden-
tical to the dimensional ones. The choice of the thermodynamic pressure based on the reference sound speed as reference
pressure, on the contrary, introduces Mach number dependency in the Euler equations. The dimensionless Euler equations
become:
oq�

ot�
þ r� � ðq�u�Þ ¼ 0 ð18aÞ

oq�u�

ot�
þ r� � ðq�u� � u�Þ þ 1

cM2r
�pþ ¼ 0 ð18bÞ

oq�eþt
ot�

þ r� � ððq�eþt þ pþÞu�Þ ¼ 0 ð18cÞ
with
eþt ¼
1

ðc� 1Þ
pþ

q�
þ cM2

2
u�2 ð19Þ
and the same scaling for the pressure and the total energy
q�e�t ¼
1

cM2 q�eþt ð20Þ
This scaling will be used to obtain an asymptotic analysis of the equations in the low Mach number limit.
In the following, we will only consider dimensionless variables and the superscript .* will be omitted for convenience.

3. Numerical methods

Euler equations for compressible flows form a hyperbolic system that can be written symbolically as
oW
ot
þr:F ðWÞ ¼ 0 in X ð21Þ
where W = [q,qu,qet]T is the conservative variable vector and FðWÞ is the Euler fluxes, homogeneous in W:
FðWÞ ¼ AðWÞW with AðWÞ ¼ oF

oW
ð22Þ
Using a numerical approximation of the equations leads to a coupled system of differential equations for the discretized vari-
ables Wh:
dWh

dt
þKhðWhÞWh ¼ 0 ð23Þ
Coupled time and space methods, developed on a Lax–Wendroff type approach, are beyond the scope of this study. These
methods are very popular and efficient for scalar cases [24] but their high-order extension to Euler and Navier–Stokes equa-
tions is not trivial [18]. In this study, we restrict ourselves to separate time and space integrations, applying a multistage
time integration for a given spatial scheme. As KhðWhÞ is a very large matrix of order 5N in 3D flows, N being the number
of grid points, with a 5 � 5 block structure, explicit schemes are widely used to integrate the system (23). However explicit
time-marching schemes are expensive at low Mach numbers because of a restrictive CFL stability condition based on the
sound speed [16,9]. On the other hand, implicit schemes suffer from ill-conditioning when the Mach number goes to zero
[17,46]. The explicit second-order-centered scheme is intrinsically unstable so that the resolution of the equation relies
either on explicit upwind schemes, explicit high-order-centered schemes or at least implicit second-order schemes. Those
classes of schemes are explored in this work starting from the widespread explicit upwind second-order Roe scheme. Its
extension to a low Mach number regime is studied through the preconditioning technique of Turkel [55] adapted to unstea-
dy compressible flows. Extensions to higher order spatial schemes are investigated by an explicit WENO-Roe scheme [27].
The WENO scheme is however well-known to be rather diffusive. In order to study the influence of the spatial dissipation
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error, an explicit high-order-centered compact scheme [57] is also chosen. Both schemes are indeed usually retained for
large-eddy simulation of unsteady compressible flows. The alternative choice of an implicit time integration is studied in
association with a simple second-order-centered spatial scheme. In this study, the schemes are applied to the Euler case,
but their extension to the Navier–Stokes equations is straightforward.

The methods are detailed in the following sections in their one-dimensional formulation, in order to simplify the presen-
tation. Euler equations reduce to
oW
ot
þ oF

ox
¼ 0 ð24Þ
The Jacobian matrix of the Euler flux F of the conservative system is defined as A = oF/oW.
A general finite volume discretization of Eq. (24) leads to the following discrete equation:
oWi

ot
þ

Fiþ1
2
� Fi�1

2

Dx
¼ 0 ð25Þ
where Wi is the approximation solution at node i, and Fiþ1
2

and Fi�1
2

the Euler fluxes at interfaces iþ 1
2 and i� 1

2 around node i.
The difference between the studied schemes rests in the time integration (explicit or implicit) and the flux reconstruction.

3.1. Explicit modified Roe–Turkel j � a scheme

The Roe scheme is widely used for solving compressible flows. In this study, a second-order spatial accurate Roe–type
scheme associated to a third-order MUSCL interpolation technique [33] is used to discretize the Euler fluxes. The numerical
method is based on a cell-centered mixed finite volume/finite element discretization [19] for unstructured meshes. In addi-
tion, a preconditioning of the numerical dissipation for low Mach number flows is applied, following the work of Guillard and
Viozat [23]. Their proposal allows an extension of explicit standard preconditioning techniques to unsteady flows [54,38].
For the preconditioned equations, the Euler fluxes at the interface iþ 1

2 of the finite volume cell around the node i are given
by
Fiþ1
2
¼ 1

2
½FðW�

iþ1
2
Þ þ FðWþ

iþ1
2
Þ� � aP�1ðfW iþ1

2
ÞjPðfW iþ1

2
ÞeAiþ1

2
jðWþ

iþ1
2
�W�

iþ1
2
Þ ð26Þ
where eAiþ1
2

is the Jacobian matrix evaluated at a state estimated with the Roe average [45], denoted here by ~f�g. P is the Turkel
preconditioner expressed in conservative variables [13]. In terms of entropy variables U = [p,u,p/qc]T, this preconditioner
reads
PU ¼
b2

1
1

264
375 ð27Þ
where b is a small coefficient of the order of the Mach number. W�
iþ1

2
and Wþ

iþ1
2

denote the MUSCL-FEM reconstruction of the
conservative variables respectively at the inner- and outer-side of the finite volume cell around node i at interface iþ 1

2, as
defined by
W�
iþ1

2
¼Wi þ

1
2
ðrWÞ�iþ1

2
�~li ð28aÞ

Wþ
iþ1

2
¼Wiþ1 �

1
2
ðrWÞþiþ1

2
�~li ð28bÞ
where i + 1 belongs to the neighboring nodes of i, and the gradients at the inner- and outer-side of the interface are built by a
linear combination of the centered gradient and the left and right gradients calculated respectively at the nodes i and i + 1:
ðrWÞ�iþ1
2
�~li ¼ ð1� jÞðrWÞCiþ1

2
�~li þ jðrWÞLi �~li ð29aÞ

ðrWÞþiþ1
2
�~li ¼ ð1� jÞðrWÞCiþ1

2
�~li þ jðrWÞRiþ1 �~li ð29bÞ
with~li ¼~xiþ1 �~xi, the distance vector between node i and its generic neighbor i + 1. The gradient centered at edge iþ 1
2 is

evaluated by
ðrWÞCiþ1
2
�~li ¼ ðWiþ1 �WiÞ ð30aÞ
whereas the left and right gradients are given by a combination of the nodal gradients and of the centered gradient at edge
iþ 1

2:
ðrWÞLi �~li ¼ 2ðrWÞi �~li � ðrWÞCiþ1
2
�~li ð30bÞ

ðrWÞRiþ1 �~li ¼ 2ðrWÞiþ1 �~li � ðrWÞCiþ1
2
�~li ð30cÞ
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The nodal gradient (rW)i on node i (resp. (rW)i+1 on i + 1) is obtained by averaging of the finite element gradients over
the neighboring elements of the node. In this scheme, the numerical dissipation and dispersion are respectively controlled by
the a and j coefficients that have been set to a = 1/10 and j = 1/3 in order to minimize the errors of the spatial scheme, fol-
lowing the work of Carpentier [15] and Duchamp de Lageneste [21]. The standard second-order Roe scheme uses a = 1/2.
Time integration is carried out with the classical explicit fourth-order Runge–Kutta scheme which is conditionally stable un-
der a CFL condition.

This explicit modified Roe–Turkel scheme has been applied to simulate unsteady compressible flows in complex geom-
etries including the cases of high [21] and moderate [44,53] Mach numbers.

3.2. Explicit high-order upwind scheme

The class of high-order compressible upwind schemes is explored with a fifth order WENO-Roe scheme [27]. This scheme
has been implemented for a cell-centered collocated discretization on structured curvilinear meshes. Derivatives of the con-
travariant components f of the Euler fluxes F are approached by a conservative difference
o

on
½f ðWÞ�

����
i

¼ 1
Dn

fiþ1
2
� fi�1

2

h i
ð31Þ
where iþ 1
2 and i� 1

2 denote the cell interface. The flux is built at the cell interface by a WENO scheme applied to the projec-
tion �f of the contravariant fluxes f on the characteristic lines, using the left eigenvector matrix evaluated at the interface with
Roe-averaged values. The flux is upwinded according to the incoming or outgoing characteristics, or equivalently to the sign
of the eigenvalues kiþ1

2
of the Jacobian matrix at the interface. The following notation will be used
if kiþ1
2
P 0 then �f iþ1

2
¼ �fþ

iþ1
2

and if kiþ1
2
< 0 then �f iþ1

2
¼ �f�iþ1

2
ð32Þ
where �fþ
iþ1

2
and �f�

iþ1
2

are shifted respectively in the left and right direction with respect to the interface. The flux �f iþ1
2

is then

transformed back to the physical space using the right eigenvector matrix at the interface. The WENO reconstruction of
�fþ

iþ1
2

and �f�
iþ1

2
is performed from k candidate stencils defined by
SrðiÞ ¼ fxi�r; . . . ; xi�rþk�1g; r ¼ 0; . . . ; k� 1 ð33Þ
with k = 3 here. On each stencil Sr(i), (k � 1)th order polynomial interpolations of nodal fluxes are built
�f r�
iþ1

2
¼
Xk�1

n¼0

cn;rþ1
�f iþnþ1þrþ1�k ð34aÞ

�f rþ
iþ1

2
¼
Xk�1

n¼0

cn;r
�f iþnþ1þr�k ð34bÞ
The weight coefficients cn,r, for n = 0, . . . ,k � 1 and r = 0, . . . ,k, are given in [27,14]. The WENO reconstruction is a convex
combination of all the candidate stencils �f r�

iþ1
2
, and is written as
�f�iþ1
2
¼
Xk�1

r¼0

x�r �f r�
iþ1

2
ð35Þ
where
x�r ¼
a�rPk�1
n¼0a�n

with a�r ¼
d�r

ðeþ b�r ðiÞÞ
2 ð36Þ
The constant e = 10�6 is chosen so that the denominator does not go to zero [50]. The functions b�r ðiÞ are regularity indicators
of the stencil Sr(i). They are calculated by undivided differences. The d�r coefficients come from the chosen approximation on
each stencil. Note that d�r ¼ dþk�1�r and b�r ðiÞ ¼ bþr ðiþ 1Þ. Following the expressions proposed by Jiang and Shu [27],
d�0 ¼ 3=10; d�1 ¼ 6=10 and d�2 ¼ 1=10, and
b�0 ðiÞ ¼
13
12
ð�f i�1 � 2�f i þ �f iþ1Þ2 þ

1
4
ð�f i�1 � 4�f i þ 3�f iþ1Þ2 ð37aÞ

b�1 ðiÞ ¼
13
12
ð�f i � 2�f iþ1 þ �f iþ2Þ2 þ

1
4
ð�f i � �f iþ2Þ2 ð37bÞ

b�2 ðiÞ ¼
13
12
ð�f iþ1 � 2�f iþ2 þ �f iþ3Þ2 þ

1
4
ð3�f i � 4�f iþ1 þ �f iþ2Þ2 ð37cÞ
This k = 3 WENO scheme allows a space resolution of order 2k � 1 = 5 in smooth areas to be obtained. Time integration is
performed with the third-order TVD Runge Kutta method developed by Shu and Osher [51], without any adjustment to
the low Mach number regime.
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3.3. Explicit filtered high-order compact scheme

The class of explicit high-order-centered schemes is explored here with a five point compact Padé scheme [57], imple-
mented on the cell-centered finite difference method on structured curvilinear meshes.

The gradient of the contravariant Euler fluxes f of F is obtained in each direction by the resolution of a tridiagonal system.
a
of
on

����
i�1
þ of

on

����
i

þ a
of
on

����
iþ1
¼ b

fiþ2 � fi�2

4Dn
þ a

fiþ1 � fi�1

2Dn
ð38Þ
where a, a and b are constants. We used the fourth-order scheme corresponding to a = 1/4, a = 3/2 and b = 0.
Centered compact difference schemes are non-dissipative and therefore cannot damp numerical instabilities due to high-

frequency modes. When applied to compressible flows, a high-order filtering technique is usually applied to the spatial com-
pact discretization to avoid spurious high-frequency oscillations. For any quantity f, the filtered value f̂ is obtained by solving
the following tridiagonal system
af f̂ i�1 þ f̂ i þ af f̂ iþ1 ¼
XN

n¼0

an

2
ðfiþn � fi�nÞ ð39Þ
giving an Nth-order scheme on a 2N + 1 stencil. Parameter af satisfies �0.5 < af 6 0.5 where higher values correspond to a
less dissipative filter. The sixth-order filter proposed by Visbal and Gaitonde [58] is retained here, where the coefficients
are defined by a0 ¼ 11

16þ 5
8 af ; a1 ¼ 15

32þ 17
16 af ; a2 ¼ �3

16 þ 3
8 af ; a3 ¼ 1

32� 1
16 af and a4 = 0, with af = 0.49 in order to minimize the dis-

sipation effect.
Time integration is carried out with the third-order TVD Runge Kutta method [51]. As for the WENO scheme, no low Mach

number modification is performed.

3.4. Implicit centered scheme

To illustrate the class of implicit centered schemes, a second-order-centered formulation of the Euler fluxes has been
implemented on a cell-centered unstructured finite volume discretization. The numerical flux at the cell interface Fiþ1

2
is

interpolated with a centered second-order method:
Fiþ1
2
¼ 1

2
AðfW iþ1 þ fW iÞ with fW i ¼Wi þ

Dx
2
ðrWÞCi ð40Þ
where A is the Jacobian matrix of Euler flux and ðrWÞCi is the centered gradient evaluated on the cell around node i using the
Green theorem.

The Euler equations are integrated in time with a second-order implicit Backward Differentiation Formula (BDF) scheme
3Wnþ1
i � 4Wn

i þWn�1
i

2Dt
þ 1

Dx
ðFðWÞnþ1

iþ1
2
� FðWÞnþ1

i�1
2
Þ ¼ 0 ð41Þ
The nonlinear system in Wn+1, symbolically denoted as G(Wn+1) = 0, is solved by an iterative Newton method:
oGðWnþ1;kÞ
oWnþ1

 !
ðWnþ1;kþ1 �Wnþ1;kÞ ¼ �GðWnþ1;kÞ ð42Þ
The Jacobian of this system, J = oG/oW is expressed in terms of the Jacobian matrix of the Euler fluxes A. In order to simplify
the evaluation of the Jacobian J, the Jacobian matrix A is calculated with a first order linearization. The linear system is solved
by a GMRES method, with a block Jacobi preconditioning, from the PETSC library [5]. The resulting scheme is of the second-
order in time and space. It is linearly unconditionally stable.

In the low Mach number regime, the linear system becomes difficult to solve, due to the large difference between the
magnitude of the total energy and the pressure, with both a leading order of O(M�2), and that of the density and the velocity
of leading order O(1), following the chosen dimensionless system. This can be corrected with the pressure decomposition
presented in Section 2. Such a decomposition has been applied to low Mach numbers flows by Shuen [52], Bijl and Wesseling
[8] or Van der Heul et al. [56]. This approach attenuates the cancellation problem due to round-off errors occurring because
of the large difference between the order of the variables and their low Mach number fluctuations [49]. The linear system
being solved iteratively, this prevents the convergence of the solution degenerating when the Mach number decreases.
Moreover, this approach is suitable for long time integration of unsteady flows and is therefore interesting in a LES/DNS
perspective.

3.5. Spectral error analysis of the numerical schemes

The spatial and temporal discretization errors of the different schemes are evaluated in the case of the one-dimensional
linear advection equation on a regular mesh of size h. Using standard Fourier analysis (see e.g. [43]), dissipation and
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dispersion errors are evaluated respectively as the error in amplitude and phase for the propagating wave solution of wave-
number k. Errors are plotted versus the cell wavenumber kh in Fig. 1, for CFL = 0.6. For large kh, the least dissipative scheme is
the implicit centered scheme but the PADE scheme is more accurate for the resolvable scales (i.e. kh 6 1). The PADE scheme
has also the lowest dispersive error. It should be pointed out that the finite volume second-order schemes are relatively
accurate as compared to the high-order finite difference schemes and especially much more precise than the standard sec-
ond-order finite difference scheme. The two centered schemes (implicit centered scheme and compact PADE scheme) are
less dissipative than the two Roe upwind schemes and the two high-order schemes (PADE and WENO) have less dispersion
error than the two second-order schemes. However this analysis does not take into account the low Mach number precon-
ditioning for the Roe–Turkel scheme, nor the high wavenumber filtering for the PADE scheme.

4. Asymptotic analysis of model flow

4.1. Model flow

The plane Taylor vortex selected for the comparison of the numerical methods is defined at initial time t = 0 in terms of
the dimensionless variables introduced in Section 2 by
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qðx;0Þ ¼ q0 ¼ 1 ð43aÞ

uðx;0Þ ¼ u0ðxÞ ¼
ow0
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;� ow0
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� �
with w0 ¼

1
p

sinðpxÞ sinðpyÞ ð43bÞ

pðx;0Þ ¼ p0 þ
1
4
ðcosð2pxÞ þ cosð2pyÞÞ ð43cÞ
with p0 = 1/cM2. This flow evolves inside the square domain [0,1] � [0,1] of the (x,y) plane and is subjected to the zero nor-
mal velocity condition on the boundaries. In the simulations, the variations of the Mach number are set by the value of p0 in
the initial flow field. In order to simplify the asymptotic analysis, the ratio p/p0 will be defined hereafter as P 	 p/p0, and be
written as
Pðx;0Þ ¼ P0 þ cM2P2ðxÞ with P0 ¼ 1 and P2ðxÞ ¼
1
4
ðcosð2pxÞ þ cosð2pyÞÞ ð44Þ
The initial velocity field has zero divergence and can be described as a vortex rotating anticlockwise around the center of the
unit box. Each streamline has its own period of rotation T(w0) increasing from T(1/p) = 2 for the circular streamlines close to
the center of the domain and going up to T(0) =1 for the streamlines near the boundaries, because of the existence of hyper-
bolic stagnation points at the corners. The initial flow is a steady solution of the incompressible Euler equations. With respect
to the compressible Euler equations, this flow is no longer constant in time. Time and space fluctuations of all variables are
produced with a dependency on the Mach number value. These fluctuations occur at different time scales. One part of the
motion is associated to the convective time of the vortex and is explained by the fact that streamlines in the initial flow are
not lines of constant entropy. At t = 0, since density is uniform, entropy varies throughout the flow with an amplitude which
is O(M2) in the zero Mach number limit, just like pressure P. Because of entropy conservation, these variations are advected
along the streamlines, thereby generating O(M2) fluctuations of density. Concomitantly, a response is generated on a short
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Fig. 1. Spectral error analysis for the 1D linear advection equation.
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time scale. The fact that the material derivative of the density has non-zero values means that the velocity field cannot re-
main solenoidal, because of mass conservation. Because of the divergence-free conditions at t = 0, the flow develops com-
pressible velocity fluctuations of order O(M2), evolving on the acoustic time scale s = t/M. This motion generates O(M3)
fluctuations in the density and the pressure fields.

4.2. Expansion around zero Mach number limit

In order to compare the different numerical methods, an approximation of the solution is sought as an asymptotic expan-
sion in powers of the Mach number. Fluid dynamics is the field of numerous applications of the method of asymptotic expan-
sions. One can refer to Zeytounian [61,62] for a detailed exposition of this question. Zank and Mattheus [60] also discuss
physical aspects of the different models of the incompressible limit of the Navier–Stokes equations. In the context of low
Mach numbers flows, Klein [31] presents applications of asymptotic expansions to the development of numerical methods.
Certain technical aspects are presented by Meister [36] and Ali [3]. More insights into the mathematical nature of the prob-
lem and a list of open questions are given in Schochet [48]. Proof of the convergence of asymptotic expansions can be found
in Klainermann and Majda [30] and in Schochet [47].

The asymptotic expansion is sought starting from the mass, momentum and, for the sake of simplicity, the entropy equa-
tion which is used instead of that of energy. This equation reads
os
ot
þ u � rs ¼ 0 ð45Þ
with s = cv ln(P/qc), following the perfect gases law, where cv is the constant volume heat capacity. The vector of variables
[P,u,s] is sought as a two-time scale expansion in powers of Mach number as
½P;u; s� ¼ ½P0;u0; s0�ðx; s; tÞ þ
X
nP1

Mn½cPn;un; sn�ðx; s; tÞ ð46Þ
in which the time dependence of the coefficients is expressed in function of both the rapid time s = t/M and the slow time t.
Introducing these expansions into the governing equations and collecting the terms that appear at the different powers of M
yields the following hierarchy of equations
rP0 ¼
oP0

os
¼ 0

oXn

os
þ LXn ¼ fn n ¼ 0;1;2; . . .

ð47Þ
where Xn = [Pn+1,un,sn] and L is the differential operator
L ¼
0 cP0r: 0

qðP0; s0Þ�1r 0 0
0 0 0

0B@
1CA ð48Þ
The right-hand side fn is such that f0 = 0 and, for n P 1, fn is a function of
oXn�1

ot
; rXm;Xm;

oXm

os
;m ¼ 1; . . . ;n� 1

� �
; sn ð49Þ
To make the system (47) solvable, a particular property is used to express the first term in the list, since the derivatives with
respect to the slow time are still unknown at this stage of the procedure. This condition states that variations of all the vari-
ables must be at most linear functions of the rapid time [48,36]:
lim
s!1

Xnðx; s; tÞ
s

¼ 0 for n P 0 ð50Þ
This condition, usually called the sublinearity condition, is a sufficient condition for the asymptotic expansion to be uni-
formly valid in time. In the following, all variables will be assumed to be decomposed in a slow part, defined as the average
over the rapid time scale
Xnðx; tÞ ¼ lim
s!1

1
s

Z s

0
Xnðx; s0; tÞds0 ð51Þ
and in a rapid part, defined by the difference
dXnðx; s; tÞ ¼ Xnðx; s; tÞ � Xnðx; tÞ ð52Þ
A particular case, leading to an important simplification of the system (47), is when the initial variations of rs are at most
O(M). In that case, and if the total volume of the flow does not vary, s0 and P0 remain constant and the left-hand side is a
linear differential operator with constant coefficients. In the present study, rs = O(M2), so that this property is naturally
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satisfied. Applying the decomposition in slow and rapid parts to the system (47), two sets of equations are obtained, one by
averaging with respect to the rapid time and another, by subtracting the averaged equations from the original ones. The lat-
ter form a system for the fluctuations on the rapid time s
odXn

os
þ LdXn ¼ dfn ¼ fn � fn n ¼ 0;1;2; . . . ð53Þ
in which the slow time appears as a parameter. The left-hand side is the differential operator of the linear acoustics. As said
earlier, conditions have to be imposed onto the right-hand side of the system in order to satisfy the sublinearity property. For
a given n, the condition takes the form of an equation for the derivative of dXn�1 with respect to the slow time t. For our
model flow, the acoustic operator L has constant coefficients and the general solution of the associated homogeneous system
is such that
dPnðx; s; tÞ ¼
X
p;q

Cn;pq cosðppxÞ cosðqpyÞ cosð2pfpqsþun;pqÞ ð54Þ
with fpq ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
P0=q0

p
.

Taking into account the particular initial conditions of our model flow, the low Mach number expansion takes the follow-
ing form
uðx; tÞ ¼ u0ðxÞ þM2½u2ðx; tÞ þ du2ðx; s;0Þ� þM3du3ðx; s; tÞ þ � � � ð55aÞ
Pðx; tÞ ¼ 1þ cM2P2ðxÞ þ cM3dP3ðx; s;0Þ þ cM4½P4ðx; tÞ þ dP4ðx; s; tÞ� þ � � � ð55bÞ
sðx; tÞ ¼ M2�s2ðx; tÞ þM4�s4ðx; tÞ þ � � � ð55cÞ
and for density the expansion reads
qðx; tÞ ¼ 1þM2 �q2ðx; tÞ þM3dq3ðx; s;0Þ þM4½�q4ðx; tÞ þ dq4ðx; s; tÞ� þ � � � ð55dÞ

The first two non-trivial equations for the averaged variables are the equations of u2 and �s2. The equation of �s2 is the trans-
port equation by the basic flow
o�s2

ot
þ u0 � r�s2 ¼ 0 ð56Þ
The initial variations of entropy are thus convected by the basic flow. This effect induces density variations at order n = 2
which are governed by the following equation
o�q2

ot
þ u0 � r�q2 ¼ u0 � rP2 ¼ �r � �u2 ¼ �

1
2

u0 � rðu2
0Þ ð57Þ
The equality between the last two terms shows that a compressible, steady contribution appears in the velocity field at order
n = 2.

The first non-zero coefficients for the rapid time variations are obtained at order n = 2. For t = 0, the solution of (53) is
found using the initial conditions
r � du2ðx;0;0Þ ¼ �r � u2ðx; 0Þ ¼ u0 � rP2 ð58aÞ
rdP3ðx;0;0Þ ¼ 0 ð58bÞ
At this order, the expression on the right-hand side of (53) vanishes and (dP3,du2) is found as the sum of the two particular
eigenmodes (p,q) = (3,1), (1,3) oscillating at frequency f31 ¼ f13 ¼

ffiffiffiffiffiffi
10
p

=2:
dP3ðx; s;0Þ ¼
1

4
ffiffiffiffiffiffi
10
p sin

ffiffiffiffiffiffi
10
p

ps
� 	

ðcos px cos 3py� cos 3px cospyÞ ð59aÞ

du2ðx; s;0Þ ¼
1

40
cos

ffiffiffiffiffiffi
10
p

ps
� 	 3 sin 3px cos py� sin px cos 3py

cos 3px sinpy� 3 cos px sin 3py

���� ð59bÞ
At the next order n = 3, the right-hand side of (53), which can be made explicit by substitution of (59a–b), represents a
source term oscillating on the rapid time. The general solution is the sum of a linear combination of the acoustic eigenmodes
and of terms corresponding to the forced response. For the pressure, the solution is given by
dP4ðx; s;0Þ ¼
X
p;q

A4;pq cosð
ffiffiffiffiffiffi
10
p

psÞ þ B4;pq cosð2pfpqsÞ
� 	

cosðppxÞ cosðqpyÞ ð60Þ
and the different coefficients and frequencies are reported in Table 1.
We note that for the lowest orders, the sublinearity condition implies that dXn does not depend on t, for n = 0,1,2. In par-

ticular, the amplitudes of dP3 and du2 remain equal to their initial value at t = 0. At higher orders, the fluctuating quantities
can depend on the slow time. As an example, in dP4, contributions of the (1,3) and (3,1) modes, which are zero at initial time,
have to be taken into account when t > 0 as functions of the slow time. The equation of their amplitude involves a coupling
with s2(x, t) and can be obtained from the sublinearity condition for (dP5,du4).



Table 1
Coefficients in expression of dP4(x,s, t = 0)

(p,q) (2,2) (4,0); (0,4) (2,0); (0,2) (2,4); (4,2)

fpq

ffiffiffi
2
p

2 1
ffiffiffi
5
p

A4,pq 2/5 1/10 1/40 7/200
B4,pq �7/16 �5/64 �1/32 �19/800
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With the perspective of comparison with the numerical simulations, the slow time solution will be explored through the
�q2ðx; tÞ term and the fast time contribution will be analyzed with the acoustic term. Their behavior according to the asymp-
totic expansion is illustrated in the next two sections.

4.3. Slow time solution

The solution of (57) is given by
1 The
�q2ðx; tÞ ¼ ½P2ðxÞ � P2ðx0ðx; tÞÞ� ð61Þ
where x0(x, t) is the initial position of a particle moving with the velocity field u0 and located at x at time t. Using (43b), (44)
and the change of variables h = arcsin(m�1/2cos(px)), / = arcsin(m�1/2cos(py)), the solution can be expressed in terms of the
first order elliptic integral F(ajm) of parameter m ¼ 1� p2w2

0 ¼ 1� sin2ðpxÞ sin2ðpyÞ and of the associated Jacobi’s elliptic
function sn [1]. This solution reads
�q2ðx; tÞ ¼
m
2
½sin2 hþ sin2 /� sn2ðFðhjmÞ þ ðsgn/ÞptÞ � sn2ðFð/jmÞ � ðsgnhÞptÞ� ð62Þ
and is evaluated numerically by using Matlab integration procedures.1 Variations of �q2ðx; tÞ are illustrated in Fig. 2 at different
times. Since density is constant initially, the convection term in (57) has a negligible effect at the first values of time. Accord-
ingly, the symmetric pattern observed at t = 0.1 is still similar to the isolevels of the source term. The sequence of images
shows that this pattern is continuously stretched and convected along the streamlines, leading to the particular lamellar
structure which develops at the large time values. As mentioned earlier, t = 2.0 is the rotation period of the fluid particles near
to the vortex center. This particular value of time will be retained for the later comparison of the numerical schemes. The final
value of time t = 8.8 corresponds to a little more than four rotation periods of the vortex center. The sequence of Fig. 2 shows
that the finer oscillations of �q2 are located near the boundaries and that their length scale decreases as time evolves. A cross-
section in the �q2 field at t = 8.8 along a diagonal of the domain is plotted in Fig. 3 where the fine structures located in the cor-
ners of the domain can be seen. In the whole domain, the finer structures are found near the walls at the mid-domain vertical
or horizontal sections. At t = 8.8, their size is half the size of the finer structures of the corners. This spatial distribution has
determined the choice of an admissible coarse mesh size for the numerical simulations, as detailed in Section 5.

When observed at a fixed location, the time evolution of �q2 is periodic with a period equal to T(w0)/4, thus depending on
the value of the stream function. Fig. 4 shows the time history of �q2 at a point close to the middle of the bottom wall. At this
location, the simulations are expected to be very sensitive to the capacity of the methods to capture the high-frequency spa-
tial oscillations and hence gives an indication about the influence of the spatial numerical dissipation. Low Mach number
variations of density are of the order of O(M2) so that the ability of the methods to exhibit the correct similitude in Mach
number can be evaluated by comparing of the time evolutions of �q2.

4.4. Fast time solution

The low Mach number expansion of the pressure shows that the leading term for the acoustic pressure is cdP3(x,s,0)M3.
This term corresponds to the (1,3) and (3,1) eigenmodes of the acoustic operator and oscillates on rapid time s as
sinð

ffiffiffiffiffiffi
10
p

psÞ. The fourth-order term is the sum of a contribution P4ðx; tÞ, evolving on the slow time scale, and an acoustic fluc-
tuation dP4(x,s, t). The time evolution of dP4(x,s, t) oscillates on the rapid time scale, as given by Eq. (60), with the primary
frequency f13 ¼ f31 ¼

ffiffiffiffiffiffi
10
p

=2 (that of dP3) and with four additional frequencies, associated to four couples of additional eigen-
modes. Frequencies and amplitudes of the corresponding oscillations are given in Table 1 near to t = 0. fourth-order terms of
the development have a small influence on the acoustic pressure for very low Mach numbers. However, for higher Mach
number values, such as M = 0.1, they cannot be entirely neglected. The asymptotic fast time solution will therefore be char-
acterized by the following acoustic pressure
Pas
3 ðx; s; tÞ 	 dP3ðx; s;0Þ þM½P4ðx; 0Þ þ dP4ðx; s;0Þ� ð63Þ
Much attention will be paid to the two following benchmarks. The first one addresses the evolution of pressure fluctua-
tion on short time near the origin and the presence of the additional frequencies in the signal. The second considers the long
time behavior of the oscillation amplitude at the primary frequency.
Matlab code is available on request to the authors.



Fig. 2. �q2ðx; y; tÞ at different times.
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Fig. 3. �q2ðx; y; tÞ profile at t = 8.8 on the diagonal line x = 1 � y.
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To compare different Mach numbers, the evolution of the pressure fluctuation has to be analyzed in term of the rapid time
scale. Fig. 5a shows Pas

3 ðx; s; tÞ on the interval 0 < s < 5. For M = 0.1 the upper value of s corresponds to t = 0.5, a quarter
rotation of the vortex core, whereas, for M = 0.01, the same value corresponds to t = 0.05. The s interval corresponds
approximately to 8 periods of the oscillation of the third-order acoustic part. The influence of the fourth-order terms on
Pas

3 ðx; s; tÞ is not visible at M = 0.01, their amplitude being ten times smaller than at M = 0.1. The corresponding additional
frequencies can be extracted by a Fourier transform of the signal.

To analyze the amplitude of the primary oscillation on the long time, the very large number of acoustic periods makes it
more convenient to represent the signal by its envelope. The procedure is first to filter out the extra frequencies, those com-
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Fig. 5. Asymptotic solution Pas
3 	 dP3ðx; s;0Þ þM½P4ðx;0Þ þ dP4ðx; s;0Þ� (acoustic pressure) at (x = 0.66, y = 0.05): (a) time evolution with s, (b) time

evolution of the amplitude of dP3(x,s,0) with t after removing from Pas
3 the additional frequencies arising at the fourth-order of the Mach expansion.
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ing from the fourth-order term, by using a Fourier band-pass filter around the frequency f31 = f13 of the dP3(x,s,0) term and
secondly to apply a Hilbert transform to the output, in order to obtain the time variation of the amplitude of the oscillation.
Fig. 5b shows that, by following this procedure, it is possible to verify that the amplitude of Pas

3 ðx; s; tÞ is constant, except for
small wiggles, which are more pronounced at M = 0.1 than at M = 0.01, due to the fact that the frequencies to be filtered are
not clearly separate from the sideband of the primary frequency. Despite this artifact, the solution is shown to be constant
and practically Mach number independent.

5. Numerical simulations

The numerical schemes presented in Section 3 are now compared with regard to their ability to capture the time evolu-
tion of the plane inviscid vortex at low Mach numbers.

The flow is initialized as given in Eq. (43a–b–c), and a slip wall condition is applied on the unit box boundaries, so that
every scheme verifies u � n = 0 where n is the wall normal unit vector. For upwind schemes, the outgoing pressure wave is
determined using the characteristics whereas, for the centered scheme, a zero pressure wall normal derivative is used. This
allows to build the Euler fluxes on the walls and ensures that their contribution is entirely due to the normal constraint im-
posed by the pressure at boundaries.

The numerical solutions are compared to the asymptotic solution for the two Mach number values: M = 0.1 and M = 0.01.
Simulations are performed up to t = 8.8 corresponding to a little more than four rotation periods of the vortex core. Compar-
isons with the asymptotic solution are performed on a regular mesh of the (x,y) plane of 120 � 120 nodes. This mesh size
allows the different schemes to reasonably predict the properties of the flow while exhibiting substantial differences for long
time integration. If the mesh cell is able to describe the density fluctuations in the corners of the domain at t = 8.8, it is about
two times too large to predict the highest spatial frequencies of the slow part of the density occurring near the middle of the
walls. Unless specified, time integration satisfies the same CFL constraint for all the methods, taking CFL = 0.6, at M = 0.1 and
M = 0.01, regardless of the low Mach number treatment. The convergence criteria of Newton’s method, which are the same
for all implicit simulations, are such that the solution of the nonlinear system is found when the nonlinear residuals have
decreased by six orders of magnitude within a maximum of 50 iterations. At each nonlinear step, the linear system is solved
within a maximum of 500 iterations and the solution converges when the residual has decayed by 9 orders. With those cri-
teria, on the 120 � 120 mesh and at CFL = 0.6, the Newton method requires about 4 (resp. 16) iterations whereas the linear
system is solved after 3 (resp. 12) iterations at M = 0.1 (resp. 0.01). The accuracy of the selected methods is discussed in Sec-
tion 5.1. The slow and rapid parts of the low Mach number flow predicted by the simulations are analyzed in Sections 5.2 and
5.3 respectively. The influence of the low Mach number treatment is given in Section 5.4 together with a discussion about the
convergence criteria of the implicit solver.

5.1. Accuracy of the numerical methods

The compressible solutions u(x, t) predicted by the numerical schemes are compared at t = 8.8 to the incompressible ini-
tial solution u0(x), corresponding to the zero-order term in the low Mach number asymptotic development, for M = 0.1 and
M = 0.01. The evolution of the L2 norm of the error ku � u0k2 with the mesh refinement is shown in Fig. 6 for every scheme.
The second and fourth-order slopes have been added to facilitate comparison.

The centered scheme (Fig. 6a) exhibits the lowest error level on the coarser mesh of all schemes, showing that the method
has here the lowest numerical dissipation level. The global second-order accuracy of the centered method is well recovered
for both Mach number flows. Moreover, the error level is the same for both Mach number values, showing that the global
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Fig. 6. Norm L2 of the velocity error between the compressible and incompressible solutions: (a) implicit centered scheme, (b) Roe–Turkel scheme, (c)
fourth-order PADE scheme, (d) fifth-order WENO scheme.
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accuracy is Mach number independent. The high-order terms of the Mach number expansion have a growing influence on
the compressible solution for higher Mach number flows, at M = 0.1. This is the reason why the difference between the com-
pressible solution and the zero Mach number expansion term saturates for the finer meshes where the solution is more accu-
rately predicted. It should be noted that a saturation level at M = 0.1 exists and is identical (
10�4) for every scheme, but is
reached more or less rapidly depending on the global numerical dissipation error and the accuracy of the scheme. For the
M = 0.01 case, the saturation level, linked to the higher order terms of the Mach number development, is therefore lower,
and the centered scheme does not reach it yet on the finer mesh.

The second-order accuracy of the Roe–Turkel method is correctly recovered as well (see Fig. 6b), with a higher global er-
ror level than that obtained by the centered scheme. The same general behavior is observed between both second-order
schemes. However, a slightly higher error level at M = 0.01 than at M = 0.1 indicates that the Roe–Turkel scheme is not en-
tirely Mach independent. The numerical dissipation is indeed not identical at M = 0.1 and M = 0.01.

The high-order compressible PADE and WENO schemes (Figs. 6c and d) do exhibit a large difference between the error
level at M = 0.01 and M = 0.1, that can be explained by the absence of Mach number preconditioning in these methods. At
M = 0.1, the error level of the WENO scheme on the coarser mesh is very close to that of the Roe–Turkel scheme, whereas
the PADE scheme error level is closer to the second-order-centered implicit scheme. The fourth-order accuracy of the PADE
scheme is well captured for both Mach numbers even if the saturation level is very rapidly reached for M = 0.1. Because of its
high-order discretization error, the saturation level (
10�6) is also reached for the finer meshes for M = 0.01. The difference
between the two levels varies like M2, as expected by the asymptotic analysis of the velocity field. The global accuracy of the
WENO scheme is close to 3.5. This scheme is indeed of the third-order close to the boundaries and of the fifth order away
from them. Taking into account that the scheme molecule requires six points per direction, the influence of the boundaries is
not negligible on the coarse meshes.

5.2. Numerical prediction of the slow time part

From the numerical solutions, the second-order truncation of the density field, defined as
R2ðx; tÞ 	
1

M2 ½qðx; tÞ � 1� ð64Þ
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is computed and compared to the value of
Fig. 7.
centere
CFL = 0
Ras
2 ðx; tÞ 	 �q2ðx; tÞ ð65Þ
obtained from the asymptotic solution. Isovalues of R2ðx; tÞ are compared on a 120 � 120 regular mesh at t = 2 and t = 8.8. As
shown in Fig. 7, every scheme is able to capture the solution at t = 2 without any significant difference with the asymptotic
solution.

Differences are observed at t = 8.8. Upwind Roe schemes (Figs. 7d and f) have damped the high spatial frequencies of the
density variation. The global field distribution is predicted coarsely but the lamellar structure of R2 is lost, the second-order
scheme being less accurate than the WENO scheme. This is not the case with the second-order implicit centered scheme
(Figs. 7b and 7c) that captures the lamellar structure rather well, especially close to the corners, whereas, as expected with
the test mesh, these variations are damped near the middle of the walls. As an intermediate behavior, the filtered fourth-
order PADE scheme (Fig. 7e) is able to capture the structure of the R2 field everywhere except very close to the corners where
the oscillations are damped. These comparisons show that the spatial dissipative properties of the scheme plays a significant
role in their ability to reproduce the correct behavior for R2. The two centered schemes (implicit centered scheme and PADE
scheme) give the best results since they have the least dissipative error as seen in Section 3.5. More precise results are ob-
tained using the implicit centered scheme, presumably because of the absence of high-order filtering.

It should be noted that the solution plotted here for M = 0.1 is identical to the one obtained at M = 0.01, up to t = 8.8,
showing that this solution is not affected significantly by acoustic fluctuations as expected from the asymptotic solution.
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When CFL = 10.0 is retained with the implicit centered scheme, the same solution is obtained, even though the acoustic con-
tribution has been eliminated from the calculation.

Profiles of R2ðx; tÞ along the diagonal of the box are given in Fig. 8 at t = 8.8. The particular features noted previously on
the 2D plots are also observed on these profiles and the oscillations of R2 can be compared more accurately. High-order and
low-order schemes are able to capture the high frequencies of the density field if their numerical dissipation is small enough.
Because of the high-frequency filter applied to the PADE scheme, the oscillations die out near the corners. While being of the
second-order, the implicit centered scheme captures the amplitude of the high frequencies oscillations rather well in the
entire section. However, a slight phase shift can be observed as compared to the asymptotic solution, a phase that is correctly
predicted with the PADE scheme.

Finally, time evolutions of R2ðx; y; tÞ are compared in Fig. 9 at (x = 0.5,y = 0.05). The solution given by the second-order
implicit centered scheme exhibits the same behavior for CFL = 0.6 and CFL = 10.0 showing that it is not affected by the acous-
tic fluctuations (Fig. 9a). Results obtained by the other schemes coincide with the asymptotic solution up to t = 2, and R2

values are subjected to a damping effect depending on the dissipative properties of the schemes (Fig. 9b). The second-order
Roe–Turkel scheme shows damping of density fluctuations just after t = 2 on this mesh, whereas the fifth order WENO
scheme allows correct prediction up to t = 4. The filtered fourth-order PADE scheme damps the oscillations at t = 6, and
so does the second-order implicit centered scheme. However, the solution obtained with the implicit centered scheme
exhibits a dispersive behavior due to a higher dispersion error and a lower dissipation error at high wavenumber as seen
on Section 3.5. It should be mentioned here that the nonlinear Newton solver and the linear solver retained in this study
converge enough to have no influence on the spatial solution given by the implicit centered scheme, as shown later in Sec-
tion 5.4. With the other schemes, the high frequencies of the solution are damped by their spatial dissipative properties,
thereby having a stabilizing effect for long time integration. In conclusion, a good spatial distribution of the slow time solu-
tion is given by the implicit centered scheme, and high-order schemes (PADE and WENO) show here a more robust time inte-
gration behavior.

The influence of the mesh size is illustrated in Fig. 10 where the time evolutions of R2ðx; y; tÞ at (x = 0.5, y = 0.05) are given
for the different schemes and on the three different meshes 80 � 80, 160 � 160 and 320 � 320. Dissipation errors diminish
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Fig. 8. Profiles of the slow time part R2ðx; y; tÞ of density at t = 8.8 on the diagonal line x = 1 � y. Results obtained at M = 0.1. Results obtained at M = 0.01 are
identical.
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with the mesh refinement, allowing the schemes to predict the correct amplitude of the R2ðx; y; tÞ oscillations for long time
integration. The dispersive nature of the implicit second-order-centered scheme, leading to a phase shift in the oscillations as
previously observed, appears later in time with finer meshes, showing a reduction of the numerical error with mesh refine-
ment. The finer mesh of 320 � 320 nodes however does not allow the implicit scheme (and the Roe–Turkel one) to capture
the correct solution up to t = 8.8. Numerical error still affects the solution, whereas the 320 � 320 mesh allows the PADE
scheme to match the asymptotic solution at t = 8.8 with perfect agreement.

5.3. Numerical prediction of the acoustic part

In order to compare the numerical results at the level of the acoustic fluctuations, the following expression is computed
for the two values of M and for the different numerical schemes:
P3ðx; tÞ 	
1

M3

1
c
½Pðx; tÞ � 1�M2cP2ðxÞ� ð66Þ
This expression contains virtually the third and higher order terms of the Mach number expansion. Isovalues of P3 are com-
pared in Fig. 11 to Pas

3 (Eq. (63)) on the 120 � 120 mesh at s = 5 for the different schemes.
The high-order schemes give correct results for the P3 field, with a more accurate prediction of the filtered fourth-order

PADE scheme compared to the fifth order WENO scheme. The second-order Roe–Turkel scheme gives the least accurate solu-
tion at M = 0.01, whereas the implicit scheme captures the acoustic pressure rather well at CFL = 0.6 despite the low order of
the scheme. As expected, the acoustic field is not captured at CFL = 10.0 whereas the slow part of the solution at order M2

appears to be correctly described as shown in the previous section.
The time evolutions of P3, given in Fig. 12, show that all schemes work correctly on the 120 � 120 mesh, except the Roe–

Turkel scheme (Fig. 12a) at M = 0.01. For this scheme, a 320 � 320 mesh size is required to get an acceptable solution, as
illustrated later in Section 5.4. At M = 0.1, the behaviors of the schemes are very similar (Fig. 12b). As discussed in Section
4, the influence of the fourth-order terms of the Mach expansion of the pressure is negligible at M = 0.01, whereas it is clearly
not at M = 0.1. It has been checked that the values of the frequencies of the fourth-order term are correctly captured by the
different schemes.
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While at M = 0.1, the evolution is well captured, at M = 0.01 on a 320 � 320 mesh where the solution is mesh-independent,
the small perturbations seen with the preconditioned scheme are dramatically amplified without preconditioning.

For the implicit centered scheme, the low Mach number treatment has a great influence on the solution of the nonlinear
steps. When the low Mach number pressure decomposition (see Section 3.4) is used, the residual of the energy equation at
the beginning of each nonlinear iteration is independent of the Mach number, and is of the same order of magnitude as those
of the other equations. On the contrary, when this pressure decomposition is not used, the initial residual of the energy equa-
tion is much larger (
102 at M = 0.1 and 
104 at M = 0.01) and varies as M�2. When using convergence criteria independent
of the Mach number, as specified in the introduction to Section 5, the coupled implicit system is solved with sufficient accu-
racy for all the variables to converge towards the solution when the pressure decomposition is applied. Conversely, without
this decomposition, the total energy is not calculated accurately. At M = 0.1, small wiggles can be observed for long time inte-
gration and, at M = 0.01, these spurious oscillations become more severe and finally lead the simulation to diverge with time.
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6. Conclusion

The inviscid low Mach number compressible flow which develops from the plane Taylor incompressible vortex with con-
stant density has been studied. A reference solution for this model flow has been obtained by a two-time scale asymptotic
expansion in the zero Mach number limit and has been analyzed for two Mach number values, M = 0.1 and M = 0.01. The
initial flow is a steady solution for the incompressible Euler equations but not for the compressible ones, accordingly, all vari-
ables appear to vary in space and time, because of the conservation of entropy in the compressible flow. Time evolution and
Mach number dependency of the density and pressure fields have been analyzed with the help of the asymptotic expansion.
The asymptotic expansion shows that the flow varies on two separate time scales, one is the slow convective and the other is
the fast acoustic time scale. Because of the initial conditions retained in our model flow, the Mach number dependence ap-
pears only from O(M2) terms. At this order, the variations of density that are generated in the flow do not depend on the fast
time scale. Acoustic fluctuations appear only from the third-order term. At this order, pressure fluctuations do not depend on
the slow time.

A selection of numerical schemes, based on separate time and space integration has been implemented to simulate this
flow. The ability of the schemes to predict the low Mach number flow developing from the plane Taylor incompressible vor-
tex has been analyzed.

The first scheme belongs to the class of explicit second-order Roe schemes, with a Turkel preconditioning of the Jacobian
Euler flux matrix. It is the most dissipative scheme of the selection and consequently the least accurate and also the more
robust one for the simulations at low Mach numbers. Very fine meshes are required to obtain reasonable predictions of the
slow time density variations that otherwise would be rapidly damped in space. Acoustic pressure suffers from a lack of accu-
racy at low Mach numbers.

Two explicit high-order compressible schemes have been compared, a fifth order WENO-Roe one and a fourth-order fil-
tered compact PADE one. Both schemes are analyzed without any specific treatment of the low Mach number limit. They
have shown their ability to correctly predict the slow time density variations with reasonable damping of the high spatial
frequencies on a rather coarse mesh size. The filtered PADE scheme being less dissipative than the WENO-Roe upwind
scheme, it gives better results. Both schemes are robust even if the application of a spatial filter to the centered compact
PADE scheme is necessary to deal with the high spatial frequencies of the density field variations. The PADE scheme is shown
to be the best scheme to capture the main variations of the acoustic pressure on long time integration at the smaller Mach
number.

Despite its low order of discretization, the implicit centered implicit scheme has proved to be able to capture the low
Mach density variations without dissipation but with a small dispersion error. When used with a CFL number larger than
one, acoustic fluctuations are eliminated from the solution whereas, for CFL < 1, reasonable acoustic pressure levels are ob-
tained. This second-order-centered implicit scheme needs a pressure decomposition to overcome the cancellation errors
when solving the linear and nonlinear systems in order to simulate such low Mach number flows efficiently. It is interesting
to obtain rather precise results with second-order schemes in view of applications to complex flow configurations.

To summarize, compact schemes like the PADE scheme are the most accurate ones, especially in the prediction of the
acoustic flow field. Finite volume implicit centered schemes allow larger time steps while preserving the global accuracy
of the flow variables if knowledge of the acoustic field is not required. A promising prospect would therefore be to develop
implicit high-order finite volume centered schemes to combine the advantage of both approaches, e.g. in the spirit of the
work of Visbal and Gaitonde [58] for the finite difference schemes.
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